3.1.25 \(\int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx\) [25]

3.1.25.1 Optimal result
3.1.25.2 Mathematica [C] (verified)
3.1.25.3 Rubi [A] (verified)
3.1.25.4 Maple [B] (warning: unable to verify)
3.1.25.5 Fricas [B] (verification not implemented)
3.1.25.6 Sympy [F]
3.1.25.7 Maxima [F]
3.1.25.8 Giac [F(-1)]
3.1.25.9 Mupad [F(-1)]

3.1.25.1 Optimal result

Integrand size = 39, antiderivative size = 149 \[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=-\frac {2 \sqrt {a} \sqrt {g} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{d f}+\frac {2 \sqrt {a} \sqrt {c} \sqrt {g} \arctan \left (\frac {\sqrt {a} \sqrt {c} \sqrt {g} \cos (e+f x)}{\sqrt {c+d} \sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{d \sqrt {c+d} f} \]

output
-2*arctan(cos(f*x+e)*a^(1/2)*g^(1/2)/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e)) 
^(1/2))*a^(1/2)*g^(1/2)/d/f+2*arctan(cos(f*x+e)*a^(1/2)*c^(1/2)*g^(1/2)/(c 
+d)^(1/2)/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)*c^(1/2)*g^( 
1/2)/d/f/(c+d)^(1/2)
 
3.1.25.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.40 (sec) , antiderivative size = 662, normalized size of antiderivative = 4.44 \[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) e^{-\frac {5}{2} i (e+f x)} \left (-1+e^{2 i (e+f x)}\right )^{5/2} \left (-2 i \sqrt {-1+e^{2 i (e+f x)}}+\left (i+\frac {c-d}{\sqrt {-c^2+d^2}}\right ) \sqrt {-1+e^{2 i (e+f x)}}+\left (i+\frac {-c+d}{\sqrt {-c^2+d^2}}\right ) \sqrt {-1+e^{2 i (e+f x)}}+2 i \arctan \left (\sqrt {-1+e^{2 i (e+f x)}}\right )+\frac {\left (i+\frac {-c+d}{\sqrt {-c^2+d^2}}\right ) \left (\sqrt {2} \sqrt {c} \sqrt {c+i \sqrt {-c^2+d^2}} \arctan \left (\frac {d-\left (-i c+\sqrt {-c^2+d^2}\right ) e^{i (e+f x)}}{\sqrt {2} \sqrt {c} \sqrt {c+i \sqrt {-c^2+d^2}} \sqrt {-1+e^{2 i (e+f x)}}}\right )+\left (-i c+\sqrt {-c^2+d^2}\right ) \text {arctanh}\left (\frac {e^{i (e+f x)}}{\sqrt {-1+e^{2 i (e+f x)}}}\right )\right )}{d}+\frac {\left (i+\frac {c-d}{\sqrt {-c^2+d^2}}\right ) \left (\sqrt {2} \sqrt {c} \sqrt {c-i \sqrt {-c^2+d^2}} \arctan \left (\frac {d+\left (i c+\sqrt {-c^2+d^2}\right ) e^{i (e+f x)}}{\sqrt {2} \sqrt {c} \sqrt {c-i \sqrt {-c^2+d^2}} \sqrt {-1+e^{2 i (e+f x)}}}\right )-\left (i c+\sqrt {-c^2+d^2}\right ) \text {arctanh}\left (\frac {e^{i (e+f x)}}{\sqrt {-1+e^{2 i (e+f x)}}}\right )\right )}{d}\right ) \sqrt {g \sin (e+f x)} \sqrt {a (1+\sin (e+f x))}}{\sqrt {2} d \left (-i e^{-i (e+f x)} \left (-1+e^{2 i (e+f x)}\right )\right )^{5/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\sin (e+f x)}} \]

input
Integrate[(Sqrt[g*Sin[e + f*x]]*Sqrt[a + a*Sin[e + f*x]])/(c + d*Sin[e + f 
*x]),x]
 
output
((1/2 + I/2)*(-1 + E^((2*I)*(e + f*x)))^(5/2)*((-2*I)*Sqrt[-1 + E^((2*I)*( 
e + f*x))] + (I + (c - d)/Sqrt[-c^2 + d^2])*Sqrt[-1 + E^((2*I)*(e + f*x))] 
 + (I + (-c + d)/Sqrt[-c^2 + d^2])*Sqrt[-1 + E^((2*I)*(e + f*x))] + (2*I)* 
ArcTan[Sqrt[-1 + E^((2*I)*(e + f*x))]] + ((I + (-c + d)/Sqrt[-c^2 + d^2])* 
(Sqrt[2]*Sqrt[c]*Sqrt[c + I*Sqrt[-c^2 + d^2]]*ArcTan[(d - ((-I)*c + Sqrt[- 
c^2 + d^2])*E^(I*(e + f*x)))/(Sqrt[2]*Sqrt[c]*Sqrt[c + I*Sqrt[-c^2 + d^2]] 
*Sqrt[-1 + E^((2*I)*(e + f*x))])] + ((-I)*c + Sqrt[-c^2 + d^2])*ArcTanh[E^ 
(I*(e + f*x))/Sqrt[-1 + E^((2*I)*(e + f*x))]]))/d + ((I + (c - d)/Sqrt[-c^ 
2 + d^2])*(Sqrt[2]*Sqrt[c]*Sqrt[c - I*Sqrt[-c^2 + d^2]]*ArcTan[(d + (I*c + 
 Sqrt[-c^2 + d^2])*E^(I*(e + f*x)))/(Sqrt[2]*Sqrt[c]*Sqrt[c - I*Sqrt[-c^2 
+ d^2]]*Sqrt[-1 + E^((2*I)*(e + f*x))])] - (I*c + Sqrt[-c^2 + d^2])*ArcTan 
h[E^(I*(e + f*x))/Sqrt[-1 + E^((2*I)*(e + f*x))]]))/d)*Sqrt[g*Sin[e + f*x] 
]*Sqrt[a*(1 + Sin[e + f*x])])/(Sqrt[2]*d*E^(((5*I)/2)*(e + f*x))*(((-I)*(- 
1 + E^((2*I)*(e + f*x))))/E^(I*(e + f*x)))^(5/2)*f*(Cos[(e + f*x)/2] + Sin 
[(e + f*x)/2])*Sqrt[Sin[e + f*x]])
 
3.1.25.3 Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3042, 3407, 3042, 3254, 218, 3409, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}{c+d \sin (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}{c+d \sin (e+f x)}dx\)

\(\Big \downarrow \) 3407

\(\displaystyle \frac {g \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {g \sin (e+f x)}}dx}{d}-\frac {c g \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {g \sin (e+f x)} (c+d \sin (e+f x))}dx}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {g \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {g \sin (e+f x)}}dx}{d}-\frac {c g \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {g \sin (e+f x)} (c+d \sin (e+f x))}dx}{d}\)

\(\Big \downarrow \) 3254

\(\displaystyle -\frac {2 a g \int \frac {1}{\frac {\cos (e+f x) \cot (e+f x) a^2}{\sin (e+f x) a+a}+a}d\frac {a \cos (e+f x)}{\sqrt {g \sin (e+f x)} \sqrt {\sin (e+f x) a+a}}}{d f}-\frac {c g \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {g \sin (e+f x)} (c+d \sin (e+f x))}dx}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {c g \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {g \sin (e+f x)} (c+d \sin (e+f x))}dx}{d}-\frac {2 \sqrt {a} \sqrt {g} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}\right )}{d f}\)

\(\Big \downarrow \) 3409

\(\displaystyle \frac {2 a c g \int \frac {1}{\frac {c \cos (e+f x) \cot (e+f x) a^2}{\sin (e+f x) a+a}+(c+d) a}d\frac {a \cos (e+f x)}{\sqrt {g \sin (e+f x)} \sqrt {\sin (e+f x) a+a}}}{d f}-\frac {2 \sqrt {a} \sqrt {g} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}\right )}{d f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \sqrt {a} \sqrt {c} \sqrt {g} \arctan \left (\frac {\sqrt {a} \sqrt {c} \sqrt {g} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}\right )}{d f \sqrt {c+d}}-\frac {2 \sqrt {a} \sqrt {g} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}\right )}{d f}\)

input
Int[(Sqrt[g*Sin[e + f*x]]*Sqrt[a + a*Sin[e + f*x]])/(c + d*Sin[e + f*x]),x 
]
 
output
(-2*Sqrt[a]*Sqrt[g]*ArcTan[(Sqrt[a]*Sqrt[g]*Cos[e + f*x])/(Sqrt[g*Sin[e + 
f*x]]*Sqrt[a + a*Sin[e + f*x]])])/(d*f) + (2*Sqrt[a]*Sqrt[c]*Sqrt[g]*ArcTa 
n[(Sqrt[a]*Sqrt[c]*Sqrt[g]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[g*Sin[e + f*x]] 
*Sqrt[a + a*Sin[e + f*x]])])/(d*Sqrt[c + d]*f)
 

3.1.25.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3254
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b + d*x^2), x], 
x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
 && NeQ[c^2 - d^2, 0]
 

rule 3407
Int[(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_. 
)*(x_)]])/((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g/d   I 
nt[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*Sin[e + f*x]], x], x] - Simp[c*(g/d)   I 
nt[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] 
, x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - 
b^2, 0] || EqQ[c^2 - d^2, 0])
 

rule 3409
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(g_.)*sin[(e_.) + (f_. 
)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[-2*(b/f 
)   Subst[Int[1/(b*c + a*d + c*g*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[g*Sin[e 
 + f*x]]*Sqrt[a + b*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f, g}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 
3.1.25.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(934\) vs. \(2(117)=234\).

Time = 3.64 (sec) , antiderivative size = 935, normalized size of antiderivative = 6.28

method result size
default \(\text {Expression too large to display}\) \(935\)

input
int((g*sin(f*x+e))^(1/2)*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x,method= 
_RETURNVERBOSE)
 
output
1/2/f*(g*sin(f*x+e))^(1/2)*(a*(1+sin(f*x+e)))^(1/2)*(2^(1/2)*(-(c-d)*(c+d) 
)^(1/2)*(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)*(((-(c-d)*(c+d))^(1/2)-d)*c)^(1 
/2)*ln(-(csc(f*x+e)-cot(f*x+e)+(csc(f*x+e)-cot(f*x+e))^(1/2)*2^(1/2)+1)/(( 
csc(f*x+e)-cot(f*x+e))^(1/2)*2^(1/2)-csc(f*x+e)+cot(f*x+e)-1))+4*2^(1/2)*( 
-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)*(((-(c-d)*(c+d))^(1 
/2)-d)*c)^(1/2)*arctan((csc(f*x+e)-cot(f*x+e))^(1/2)*2^(1/2)+1)+4*2^(1/2)* 
(-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)*(((-(c-d)*(c+d))^( 
1/2)-d)*c)^(1/2)*arctan((csc(f*x+e)-cot(f*x+e))^(1/2)*2^(1/2)-1)+2^(1/2)*( 
-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)*(((-(c-d)*(c+d))^(1 
/2)-d)*c)^(1/2)*ln(-((csc(f*x+e)-cot(f*x+e))^(1/2)*2^(1/2)-csc(f*x+e)+cot( 
f*x+e)-1)/(csc(f*x+e)-cot(f*x+e)+(csc(f*x+e)-cot(f*x+e))^(1/2)*2^(1/2)+1)) 
+4*(-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)*arctanh((csc(f* 
x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2))*c-4*(-(c-d)*( 
c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)*arctan((csc(f*x+e)-cot(f*x+ 
e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2))*c+4*(((-(c-d)*(c+d))^(1/2) 
+d)*c)^(1/2)*arctanh((csc(f*x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2 
)-d)*c)^(1/2))*c^2-4*(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)*arctanh((csc(f*x+e 
)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2))*c*d+4*(((-(c-d)* 
(c+d))^(1/2)-d)*c)^(1/2)*arctan((csc(f*x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)* 
(c+d))^(1/2)+d)*c)^(1/2))*c^2-4*(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)*arct...
 
3.1.25.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 271 vs. \(2 (117) = 234\).

Time = 1.47 (sec) , antiderivative size = 3273, normalized size of antiderivative = 21.97 \[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\text {Too large to display} \]

input
integrate((g*sin(f*x+e))^(1/2)*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, 
algorithm="fricas")
 
output
[1/4*(sqrt(-a*c*g/(c + d))*log(((128*a*c^4 + 256*a*c^3*d + 160*a*c^2*d^2 + 
 32*a*c*d^3 + a*d^4)*g*cos(f*x + e)^5 - (128*a*c^4 + 192*a*c^3*d + 64*a*c^ 
2*d^2 - 4*a*c*d^3 - a*d^4)*g*cos(f*x + e)^4 - 2*(208*a*c^4 + 368*a*c^3*d + 
 195*a*c^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e)^3 + 2*(64*a*c^4 + 94*a 
*c^3*d + 29*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*g*cos(f*x + e)^2 + (289*a*c^4 + 
 480*a*c^3*d + 230*a*c^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e) + 8*((16 
*c^4 + 40*c^3*d + 34*c^2*d^2 + 11*c*d^3 + d^4)*cos(f*x + e)^4 + 51*c^4 + 1 
10*c^3*d + 76*c^2*d^2 + 18*c*d^3 + d^4 - (24*c^4 + 52*c^3*d + 35*c^2*d^2 + 
 7*c*d^3)*cos(f*x + e)^3 - (66*c^4 + 149*c^3*d + 110*c^2*d^2 + 29*c*d^3 + 
2*d^4)*cos(f*x + e)^2 + (25*c^4 + 53*c^3*d + 35*c^2*d^2 + 7*c*d^3)*cos(f*x 
 + e) - (51*c^4 + 110*c^3*d + 76*c^2*d^2 + 18*c*d^3 + d^4 - (16*c^4 + 40*c 
^3*d + 34*c^2*d^2 + 11*c*d^3 + d^4)*cos(f*x + e)^3 - (40*c^4 + 92*c^3*d + 
69*c^2*d^2 + 18*c*d^3 + d^4)*cos(f*x + e)^2 + (26*c^4 + 57*c^3*d + 41*c^2* 
d^2 + 11*c*d^3 + d^4)*cos(f*x + e))*sin(f*x + e))*sqrt(-a*c*g/(c + d))*sqr 
t(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e)) + (a*c^4 + 4*a*c^3*d + 6*a*c^2* 
d^2 + 4*a*c*d^3 + a*d^4)*g + ((128*a*c^4 + 256*a*c^3*d + 160*a*c^2*d^2 + 3 
2*a*c*d^3 + a*d^4)*g*cos(f*x + e)^4 + 4*(64*a*c^4 + 112*a*c^3*d + 56*a*c^2 
*d^2 + 7*a*c*d^3)*g*cos(f*x + e)^3 - 2*(80*a*c^4 + 144*a*c^3*d + 83*a*c^2* 
d^2 + 18*a*c*d^3 + a*d^4)*g*cos(f*x + e)^2 - 4*(72*a*c^4 + 119*a*c^3*d + 5 
6*a*c^2*d^2 + 7*a*c*d^3)*g*cos(f*x + e) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*...
 
3.1.25.6 Sympy [F]

\[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \sqrt {g \sin {\left (e + f x \right )}}}{c + d \sin {\left (e + f x \right )}}\, dx \]

input
integrate((g*sin(f*x+e))**(1/2)*(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e)),x 
)
 
output
Integral(sqrt(a*(sin(e + f*x) + 1))*sqrt(g*sin(e + f*x))/(c + d*sin(e + f* 
x)), x)
 
3.1.25.7 Maxima [F]

\[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {g \sin \left (f x + e\right )}}{d \sin \left (f x + e\right ) + c} \,d x } \]

input
integrate((g*sin(f*x+e))^(1/2)*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, 
algorithm="maxima")
 
output
integrate(sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))/(d*sin(f*x + e) + 
c), x)
 
3.1.25.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\text {Timed out} \]

input
integrate((g*sin(f*x+e))^(1/2)*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, 
algorithm="giac")
 
output
Timed out
 
3.1.25.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int \frac {\sqrt {g\,\sin \left (e+f\,x\right )}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{c+d\,\sin \left (e+f\,x\right )} \,d x \]

input
int(((g*sin(e + f*x))^(1/2)*(a + a*sin(e + f*x))^(1/2))/(c + d*sin(e + f*x 
)),x)
 
output
int(((g*sin(e + f*x))^(1/2)*(a + a*sin(e + f*x))^(1/2))/(c + d*sin(e + f*x 
)), x)